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ABSTRACT

We address the e-rulemaking problem of reducing the man-
ual labor required to analyze public comment sets. In cur-
rent and previous work, for example, text categorization
techniques have been used to speed up the comment analysis
phase of e-rulemaking — by classifying sentences automati-
cally, according to the rule-specific issues [2] or general top-
ics that they address[7, 8]. Manually annotated data, how-
ever, is still required to train the supervised inductive learn-
ing algorithms that perform the categorization. This pa-
per, therefore, investigates the application of active learning
methods for public comment categorization: we develop two
new, general-purpose, active learning techniques to selec-
tively sample from the available training data for human la-
beling when building the sentence-level classifiers employed
in public comment categorization. Using an e-rulemaking
corpus developed for our purposes [2], we compare our meth-
ods to the well-known query by committee (QBC) active
learning algorithm [5] and to a baseline that randomly se-
lects instances for labeling in each round of active learning.
We show that our methods statistically significantly exceed
the performance of the random selection active learner and
the query by committee (QBC) variation, requiring many
fewer training examples to reach the same levels of accuracy
on a held-out test set. This provides promising evidence
that automated text categorization methods might be used
effectively to support public comment analysis.
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1. INTRODUCTION

Each year federal regulatory agencies issue more than 4,000
new rules [6]. By law, many of these must be created through
a complex and expensive process in which the agency drafts
a proposed rule and then exposes the proposal, any under-
lying data, and its legal and policy rationale to public com-

ment. This process, notice and comment (N&C) rulemaking,
is the mechanism through which most agencies make major
regulatory policy.

In N&C rulemaking, the agency may receive anywhere from
dozens, to hundreds of thousands, of comments, depending
on the subject and complexity of the rule. The agency’s
fundamental legal obligation is to review all the comments
received and, if it chooses to adopt the proposed rule, to is-
sue a statement that not only (i) demonstrates why its choice
is within its statutory authority and sound as a matter of
regulatory policy, but also (ii) responds to significant crit-
icisms made in the comments and explains why it rejected
alternative approaches suggested there [19]'. The stakes for
the agency are high. Failure to adequately address critical
comments and discuss alternatives in the statement accom-
panying the final rule can lead a court to invalidate the rule
— thereby requiring still more agency time and effort to
perform additional review and explanation [3, 19]%.

Electronic rulemaking (e-rulemaking) includes a wide range
of ways that information technology might be used in rule-
making. It includes, but is not limited to: converting the
agency’s docket (the filing system showing all its activities,
including rulemaking) to electronic form and making it avail-
able via the Internet; allowing submission of comments via
e-mail and the Internet in addition to (and perhaps eventu-
ally in place of) conventional mail and fax; and using search
engines, hyperlinked text, and other IT capacities to allow
both the public and agency rulewriters to find, sort, and
link the massive amount of material relevant in a rulemak-
ing more easily and cheaply than could possibly be done
with hardcopies.

This paper focuses on the application of information tech-
nology to the comment analysis phase of e-rulemaking. To
expedite this time-consuming, but critical, stage of the e-
rulemaking process®, researchers have begun to investigate
methods from natural language processing, information re-
trieval, and machine learning. Yang & Callan [21, 22], for
example, extend duplicate detection methods from informa-
tion retrieval to handle “e-postcard campaigns”, i.e. e-mail

LAt 524-50.
2Strauss et al. at 524-50 and 1016-26.

31t is important to note that review of public comments by
government representatives is usually a statutory require-
ment [3].



campaigns organized by special interest groups that supply
constituents with electronic form letters for submission dur-
ing the comment period. When comments were submitted
on paper, modifying the form letters was difficult — the let-
ter would need to be re-typed to add or remove text. As
a result, most form letters were exact duplicates of one an-
other. These are fairly easy to identify and need be analyzed
for content only once. In electronic form, however, form let-
ters are very easy to change, and it is exactly the changed
snippets that agency rulewriters want to locate to deter-
mine if the modification introduces substantive information
not present in the original. The Yang & Callan [21, 22] work
develops automatic methods to identify these near-duplicate
submissions and to delineate the modified portions from the
original letter.

In addition, Kwon et al. [8] and Kwon & Hovy [7] investigate
the use of natural language processing methods to identify
the main claims of a comment and then categorize them
according to whether they support the proposed rule, oppose
the proposed rule, or are proposing a new idea.

Finally, and more relevant for our work, Kwon et al. [§]
and Kwon & Hovy [7] also apply text categorization meth-
ods from machine learning to automate the comment sort-
ing process. In particular, they develop a set of eight gen-
eral topic codes — ECONOMIC, ENVIRONMENT, GOVERNMENT
RESPONSIBILITY, HEALTH, LEGAL, POLICY, POLLUTION, and
TECHNOLOGY and train a machine learning algorithm (they
use a support vector machine (SVM) [20]) to classify indi-
vidual sentences according to the topics they address. As is
the case for all supervised inductive machine learning algo-
rithms, SVM-based text categorization methods require an
initial “training phase” in which the learning algorithm is
provided with many examples of the task to be learned. For
comment categorization, the algorithms need training data
in the form of sentences from public comments that have
been manually annotated with their correct subtopic codes.
After training, the SVM can then decide which, if any, of the
subtopic codes applies to sentences that it has not seen be-
fore. As in the near-duplicate detection research, the goal of
subtopic categorization is to speed up the (required) manual
review of public comments, in this case by grouping similar
comment snippets so that rulewriters can read and respond
to them as a whole.

In recent work, we show that text categorization methods
can be used to categorize public comments not only with re-
spect to a small set of general subtopic codes, but according
to the much larger, and often hierarchical, set of rule-specific
issues employed during comment analysis [2]. Our agency
collaborators — rulewriters from the U.S. Department of
Transportation (DOT) and the U.S. Department of Com-
merce — indicate that this finer-grained categorization cor-
responds more closely to what is actually done as a first step
in the comment analysis process: analysts map each portion
of a comment to the substantive rule-specific issue(s) that it
addresses, if any.

This paper extends previous e-rulemaking research in com-
ment categorization in a different direction: we investigate
the use of active learning algorithms as a means of sig-
nificantly reducing the amount of human time required to

provide annotated training data for the learning-based text
categorization methods. Since the practical purpose of em-
ploying machine learning methods is, in the first place, to
reduce the strain on agency rulewriters, reducing the total
amount of manual issue annotation necessary for accurate
results is a means to those ends; and the goal of active learn-
ing is exactly that.

We present two new approaches to active learning. Each
extends the well known “query by committee” (QBC) algo-
rithm [5]. The first extension exploits the hierarchical nature
of issue categorization to select the most uncertain instance
w.r.t the category to be labeled next. We call this the Hier-
archical Query by Committee (HQBC) method. The second
extension, Hierarchical Query by Committee by Clustering
(HQBCBC), builds on HQBC and relies on clustering meth-
ods to select the instance that maximizes both uncertainty
and influence for the learning algorithm. More specifically,
HQBCBC selects instances (a) that are maximally confusing
for the committee of classifiers and (b) whose correct classi-
fication is likely to (positively) affect the largest number of
other instances in the data set.

Both approaches are evaluated on the same e-rulemaking
data sets — the CeRI* FTA Grant Circulars Corpus [2].
Our results show that both HQBC and HQBCBC obtain
set precision levels faster than randomly selecting training
instances for labeling, usually more than twice as fast. Fur-
thermore, HQBC and HQBCBC exceed the performance of
standard QBC on five, and all, of the six FTA data sets,
respectively. Although additional research is required, we
conclude that our results provide encouraging evidence that
an active learning approach to issue categorization of public
comments for e-rulemaking is feasible.

2. ADDITIONAL RELATED WORK

Related work in e-rulemaking was discussed above. This
section describes related work on active learning for text
categorization from the fields of machine learning and infor-
mation retrieval.

The goal of active learning algorithms is to process (unla-
beled) training examples in the order in which they are most
useful or informative to the learning algorithm [4]. In each
iteration of active learning, one or more such instances are
selected, labeled with respect to their correct classification
or category (usually by a person), and added to the set of
examples used to train the classifier; the classifier is then
retrained with this (slightly larger) training set. Once re-
trained, the classifier is applied to the remaining unlabeled
instances in the data pool and the process repeats — either
for a fixed number of iterations or until performance of the
resulting classifier is good enough.

In the active learning setting, “usefulness” is commonly quan-
tified as the learner’s uncertainty about the class of an in-
stance [9] — the more uncertain the learning algorithm is
w.r.t. an instance, the more useful that instance will be to
the learner. One of the standard methods for choosing un-
certain instances for labeling during active learning is the
query by committee (QBC) approach [5]. In this method,

4Cornell e-Rulemaking Initiative, URL: ceri.law.cornell.edu.



three or more different classifiers are trained using the avail-
able labeled training data, and in each round of active learn-
ing, an instance for which there is the most classification dis-
agreement within the ensemble is selected for labeling (see,
for example, Seung et al. [17] and Muslea et al. [11]).

The active learning algorithms we develop here are, at their
core, QBC active learners. In general, a QBC classifier en-
semble can be created by training different learning models
(using the same feature set) for each classifier (e.g. an SVM,
a decision tree, and a k-nearest neighbor algorithm) or by
using a single learning model for each classifier, but encod-
ing the training instances for each using a different feature
set (e.g. Muslea et al. [11]).

Another common “selective sampling” method for active learn-

ing relies on the confidence associated with classifications
made by a single classifier [9]. And there are many variations
of active learning that aim to increase diversity among the
selected sample (see, for example, Brinker [1] and Melville
& Mooney [10]). Still others have focused on the develop-
ment of active learning variants for specific learning algo-
rithms (e.g. Brinker [1] and Scholkopf & Smola [16] do so
for SVMs).

In this paper, we develop two new active learning algorithms,
neither of which is specific to the e-rulemaking domain: both
are general-purpose extensions of the QBC approach to text
categorization. In addition, both approaches handle hier-
archical categories while previous approaches assume a flat
topic list.

In the remainder of the paper, we describe the e-rulemaking
corpus from which our data is derived (Section 3); the new
active learning algorithms (Sections 4 and 5); our experi-
mental methodology (Section 6); and, finally, the results of
our experiments (Section 7).

3. THE FTA GRANT CIRCULARS CORPUS

Working with analysts from the Federal Transit Authority
(FTA) in the Department of Transportation, we identified
FTA “guidance circulars” that the agency proposed to issue.
Such circulars are a type of document on which the FTA fre-
quently seeks public comments. Here, the proposed advice
involved grants under three federal statutes that fund local
transportation services for the elderly, disabled persons, and
low income persons commuting to work.®

The 267 comments submitted electronically during the cir-
cular’s 45-day comment period comprise the CeRI FTA Cir-
cular Grants Corpus. Next, we constructed a list of 38 issues
likely to be raised in the comments. This list was derived
by consulting both the actual issue summaries prepared by
the FTA analyst when she reviewed the comments, and the
Federal Register notice seeking comments, which explained
the proposal in detail and highlighted various aspects. The
issues are organized into a shallow categorization hierarchy
in which the 38 issues are leaf nodes. Seventeen issues form
the first level of the hierarchy, five of which expand into

®Docket No. FTA-2006-24037: Elderly Individuals and Indi-
viduals With Disabilities, Job Access and Reverse Commute,
and New Freedom Programs: Coordinated Public Planning
Guidance for FY 2007 and Proposed Circulars.

two or more sub-issues at level two. The issue hierarchy is
shown with abbreviated category names in Figure 1. NONE
is a special category (shown as the 39th “issue”) that is au-
tomatically assigned to sentences deemed by the annotator
to address none of the rule-specific issues.

A small team of law school students annotated the comments
at the sentence-level w.r.t. the fine-grained issue set. They
are free to assign more than one issue to a single span of
text, if warranted, but rarely do so (4% of the sentences in
the corpus with a maximum of three issues per sentence).

In all, there are 11,094 sentences in the corpus. On aver-
age, there are 41.55 sentences per comment. The shortest
comment has one sentence; the largest has 1420 sentences.
Each comment has an average of 41.55 sentences with a min-
imum of one sentence per comment and a maximum of 1420
sentences. Our experiments report results for three of the
annotators randomly chosen from the set of six.

146 of the 267 comments were used for the interannotator
agreement study, with an average of 2.66 annotators per
comment. Because there can be multiple issues per sentence
and the annotators covered different numbers and subsets of
the documents, we currently measure interannotator agree-
ment using a basic agreement (AGR) measure (rather than
Fleiss’ kappa): for all pairs of annotators across all com-
ments that were annotated by both annotators, we calcu-
late the percentage of sentences for which the annotators
assign overlapping issue labels. In most cases, this amounts
to checking for an exact issue match (since 96% of the sen-
tences are assigned a single issue).

For the fine-grained 39 issue set, the average interannotator
agreement score is 46.4%; for the 17 top-level issues, agree-
ment goes up to 64.7%. Although somewhat low, the scores
are comparable to those in the subtopic categorization stud-
ies of Kwon et al. [8]. Additional details regarding the CeRI
FTA Grant Circulars Corpus and its creation can be found
in Cardie et al. [2].

4. HQBC: THE HIERARCHICAL QUERY

BY COMMITTEE ALGORITHM

As in standard Query by Committee (QBC) active learning
algorithms, our Hierarchical Query by Committee (HQBC)
algorithm employs three classifiers in its ensemble, each a
different model type. In contrast to QBC, however, HQBC
aims to exploit the category hierarchy when assigning a “dis-
agreement score” to each instance during active learning it-
erations. The more that the classifiers disagree w.r.t. the de-
tailed and top-level issues to associate with an instance, the
better that instance is for active learning. For each model
type in the ensemble, HQBC trains two classifiers:

COARSE classifies an instance according to the 17 top-level
issues, and

DETAILED classifies an instance according to the 39 more
detailed issues.

Then, for any particular instance in the data pool, HQBC
makes six decisions — one by the COARSE classifier and one
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Figure 1: Issue Hierarchy

by the DETAILED classifier for each of the three model types.
The disagreement score for the instance can then be cal-
culated as follows (where a higher number indicates more
disagreement and, hence, more uncertainty w.r.t. the class
value)S:

score=7 when none of the COARSE predictions agrees
score=6 when 2 of 3 COARSE predictions agree

and none of the DETAILED predictions agrees
score=5 when 2 of 3 COARSE predictions agree

and 2 of 3 DETAILED predictions agree
score=4 when all 3 COARSE predictions agree

and none of the DETAILED predictions agrees
score=3 when 2 of 3 COARSE predictions agree

and all 3 DETAILED predictions agree
score=2 when all 3 COARSE predictions agree

and 2 of 3 DETAILED predictions agree
score=1 when all 3 DETAILED predictions agree

and all 3 COARSE predictions agree

Once the score is calculated for all instances in the unlabeled
data pool, they are sorted in decreasing numerical order by
score and the top n records are selected for manual annota-
tion and removed from the unlabeled data pool. After an
annotator supplies the correct category for the selected in-
stances, they are added to the training data, the ensemble
classifiers are re-trained, and the process repeats.

5The algorithm used in our experiments does not verify
that the DETAILED prediction is from the correct subclass
of COURSE for scoring purposes. Modifying the HQBC algo-
rithm to account for this situation slightly improves perfor-
mance for the data set used in these experiments.

5. HQBCBC: THE HIERARCHICAL QUERY
BY COMMITTEE BY CLUSTERING AL-

GORITHM

The Hierarchical Query by Committee by Clustering
(HQBCBC) algorithm builds on the HQBC algorithm of
Section 4. Its goal is to identify useful instances in the un-
labeled data pool when the HQBC algorithm is not particu-
larly discriminating, i.e. when HQBC assigns the same max-
imum disagreement scores to many instances. In particular,
HQBCBC aims to select instances (a) that are maximally
confusing for the committee of classifiers (as in HQBC) and
(b) whose correct classification is likely to (positively) affect
the classification of most additional instances in the data
set. It accomplishes this by using the HQBC disagreement
scores as an estimate of the true uncertainty score to as-
sign each unlabeled instance and by relying on clustering to
determine an instance’s influence.

More specifically, each round of HQBCBC active learning
operates as follows. We will refer to those instances with the
maximal HQBC disagreement score for the round as “seed”
instances. For each seed instance, seed,

1. Place seed in its own cluster, clusterseeq.

2. Calculating distance using a standard cosine similar-
ity measure, find all instances in the unlabeled data
pool within a distance of d from seed and add them to
clusterseed.

3. Calculate the influence score of seed as the size of its
cluster:

influence(seed) = |clusterseeq |

Note that instances from the data pool can be part of more
than one cluster. In addition, the distance threshold d is
a parameter that should be set empirically based on the
training data.

With a disagreement score, disagree, and an influence score,
influence, in hand for each seed instance, HQBCBC then



sorts the seeds according to decreasing disagree * influence.
Finally, for each of the top n seeds, seed, HBQBCBC returns
one randomly selected instance from clusterseeq for manual
annotation and removes seed from the unlabeled data pool.
After manual annotation, the n newly labeled instances are
added to the training data, the ensemble classifiers are re-
trained, and the process repeats.

Intuitively, HQBCBC prefers selectively sampling a “confus-
ing” sentence for annotation if that sentence has more near
duplicates in the corpus. Consider an extreme case where
10% of the corpus is a duplicate of a single sentence, all of
the duplicates of the sentence are unannotated, and the clas-
sifiers found the sentence to be confusing. In this circum-
stance, the algorithm would prefer the annotation of this
sentence over another sentence that was equally confusing
but lacked the same number of duplicates. The worst case
for this algorithm occurs when multiple sentences are nearly
identical in their use of words yet have interpretations that
result in different classifications. For our data sets, this is
apparently not a problem.

6. METHODOLOGY

Section 3 briefly described the creation of the CeRI FTA
Grant Circulars Corpus used in our experiments. There are
a few options for creating a gold standard from this corpus.
We might create an “aggregate” gold standard that covers
the entire comment set, comprised of comments whose an-
notations have been reconciled by a pair of annotators. A
second option — one that more closely approximates what
we understand, from our agency partners, to be real-world
agency practice — involves creating one gold standard per
annotator. In particular, when more than one analyst re-
views a comment set to find, extract, and organize the issue
references for subsequent analysis and preparation of the ac-
companying final statement, these analysts typically divide
the issues among themselves: each reads all the comments,
taking responsibility for collecting material as to his or her
allotted issues. As a result, there typically is not more than
one “annotator” per issue in the real-world. The gold stan-
dard under this annotation scheme would then be the union
of the issue-specific annotations of each analyst.

We have adopted yet a third strategy for creating a gold
standard for the purposes of this paper. In particular, we
are interested in investigating the ability of the text cate-
gorization algorithms to learn to duplicate the annotations
produced by an arbitrary agency analyst. As a result, we
treat the annotations of each annotator as a separate gold
standard, producing six separate corpora. We report results
for three of the six annotators. (There is nothing substan-
tially different across the set of six vs. the set of three.)

We evaluate our algorithms w.r.t. both the COARSE (17 cat-
egories, 16 issues plus NONE) and the DETAILED (39 cate-
gories, 38 issues plus NONE) issue sets. Table 1 specifies
the instance counts, i.e. the number of sentences, associated
with each data set.

We measure the performance of our classifiers using preci-
sion. (Here, precision is equivalent to accuracy because one
categorization decision is made for each sentence in the cor-
pus.) For the active learning curves, we report precision

Data Set Name || Instance Count
ad 1,318
hlc 1,119
Ick 1,601

Table 1: Number of Instances per Data Set

across the entire data set. Classifiers that produce higher
levels of precision with fewer training instances, i.e. fewer
rounds of active learning, are better. To compare classifiers
we use paired two sample for means t-tests.

6.1 Text Pre-processing

Input to text categorization systems is usually pre-processed
to create word/term vectors for each training and test in-
stance [15]. In addition, the word-based feature vectors are
associated with a corresponding weight vector that ascribes
a different weight to each word. Before creating word vec-
tors, we remove non-word tokens, map text to lower case,
and then apply the Porter Stemming Algorithm described
in Porter [13].

Weighting strategies such as tf-idf (i.e. term frequency mul-
tiplied by inverse document frequency) have been shown to
be generally effective, but specialized weighting schemes of-
ten provide improvements [12]. After empirical testing of
various weighting schemes on the training data, this work
adopts a term weighting strategy related to mutual infor-
mation, which is the ratio of sentence-based word frequency
and the overall frequency of the word across the corpus.
Equation 1 for the feature value w; is shown:

w: = log (IM) (1)

p(w)

In equation 1, the top term, p(w|s), is the probability of a
word in a particular sentence (the number of occurrences in
each sentence, divided by the number of total words in the
sentence). The denominator term p(w) is the probability of
a word across all sentences (the number of occurrences of
this word in all sentences, divided by the total number of
words in all sentences).

Finally, only words with w; > 0 are included in the sentence-
based term vectors.”

6.2 Classifiers and Parameters for the Active

Learners
For the ensembles in each of the QBC, HQBC, and HQBCBC
algorithms, we employ a Support Vector Machine (SVM), a
Maximum Entropy classifier, and a Naive Bayes classifier. In
particular, we selected Mallet 0.4% for its Naive Bayes and
Maximum Entropy implementations, and SVMlight® for its
single-class SVM implementation. For the experiments here,
we did not learn the optimal parameter settings for each

"The run-svm-text.pl script from Purpura and Hillard [14]
performs the pre-processing steps described above and is
available for download from www.stephenpurpura.com.

8 Available at http://mallet.cs.umass.edu.

9 Available at http://svmlight.joachims.org.



classifier based on a validation set. Rather, we ran each al-
gorithm under a number of parameter settings and selected
the settings that provided the best performance on a portion
of the CeRI FTA Circulars Corpus when the classifier was
used in isolation, i.e. not in an ensemble.

To support multi-class classification with SVMlight, we used
the run-svm-text.pl script from footnote 7 that implements
pairwise voting instead of the common one vs. the rest voting
schemes.

In each round of active learning, we select n=10 instances
for labeling. In practice, the selection of n will require an
appropriate balance of computational cost vs. system accu-
racy.

7. RESULTS

Figure 2 shows the performance of the best base classifier
(i.e. the best classifier among the active learning ensemble,
when used in isolation) — the Maximum Entropy classifier
— for each of the 17- and 39-category versions of the three
annotator-specific gold standards. Not surprisingly, perfor-
mance is better on the 17-category data than the 39-category
data. Although not directly comparable, the results for both
versions of the data approach the interannotator agreement
results of 46.4% for the 39 issues and 64.7% for the 17 top-
level issues.

Random Learning Precision
5-Fold Cross Validation

61% - 62% 4%
52%
44%

Wad-39 W hlc-39 W Ick-39 ad-17 hlc-17 Ick-17

Figure 2: 5-fold cross Validation Accuracy for the
MaxEnt Classifiers. Results for the 17-issue data
sets are shown in black on the left; results for the
39-issue version of the data sets are shown in gray
on the right.

Learning curves for the three base classifiers (labeled svm,
nb, and me) when trained via random instance selection are
shown in Figure 3 and Figure 4. The straight line (labeled
baseline) in each Baseline graph corresponds to the perfor-
mance of a classifier that selects the majority class (i.e. the
issue that occurs most often) for the data set. (This is usu-
ally NONE.) In interpreting the results, the performance of
the base classifiers is important for the active learning ex-
periments because weakness of the base learners can signifi-
cantly impact the overall performance of the active learning
system.10

OFor example, using an ensemble with weak learners, such
as a classifier trained with binary presence features using
unstemmed words, significantly decreases the performance
of all of our active learning ensembles.

Learning curves for each of the active learning algorithms
applied to each of the data sets are also shown in Figure 3
and Figure 4. In particular, we compare the HQBC and
HQBCBC algorithms with the standard QBC algorithm (us-
ing the same base classifiers), which should be considered the
baseline with which to compare the NQBC and HQBCBC
algorithms.

In general, the graphs show that the active learners achieve
higher levels of precision faster than the non-active learners.
This is especially the case for the HQBC and HQBCBC
algorithms. Using single tailed t-tests, we validated that the
sample mean of the precision curve produced by HQBCBC
was always expected to be higher than the sample mean
of the curve produced by QBC. We found similar results
for HQBC, with the lone exception being the 39-category
experiment using the data from the ‘ad’ annotator. For the
ad-39 experiment, the difference between the sample mean
of precision produced by either the QBC or HQBC curves
was expected to be 0.

Understanding hcl-17’s Performance. At first glance, the
results of HQBC on hcl-17 seem highly suspect because they
achieve extremely strong results when compared to the as-
sociated inter-annotator agreement scores. But examining
the success of the algorithm on this data set is illuminating.
Uncertainty, as represented by the mean HQBC SCORE,
remains higher for the hcl annotator for a larger propor-
tion of the data set than for other two annotators. When
the mean HQBC score is higher, there is greater differenti-
ation between uncertainty for the instances, and when this
translates into picking better instances for labeling, the al-
gorithm’s performance increases faster.

Figure 5 shows the mean HQBC SCORE for each data set
at each point on the learning curve. In comparison, QBC’s
uncertainty measure (the average number of dissenting votes
from the majority of the ensemble) always approaches zero
faster than mean HQBC score. When the QBC ensemble
votes begin to stabilize, performance reverts to levels that
approach random selection.

In the early rounds of annotation, our active learning algo-
rithms try to avoid labeling a lot of instances from highly
confident and accurate instance groups. Instead, we pick in-
stances where the learners lack confidence in the predictions
on the instances. When learning the correct estimate for an
instance affects the predictions for large blocks of the data,
performance improves dramatically. When learning the cor-
rect estimate for a seemingly incongruent (and potentially
noisy) instance, the algorithm actually selects better in subse-
quent rounds. As the Figure shows, the noise in the training
data causes an increase in a subset of HQBC SCOREs. The
spread associated with differentiation of HQBC SCOREs is
what allows the algorithm to selectively subsample better.
So noisy data helps improve the process of selective sub-
sampling, either because the system will keep selecting from
the instances that compose the confused class to improve
its confidence or because the system learns to overcome the
noise. When the former happens, the process of removing
the confused instances from the test set takes longer. When
the latter occurs, the process can be very quick.
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Figure 3: Baseline Classifier versus Active Learning Precision for 39 Categories
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Figure 4: Baseline Classifier versus Active Learning Precision for 17 Categories
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Annotator-Specific Data Set

Intuitively, we have created a sort algorithm that sorts a
data set such that the instances at the tail end of the data
set are most likely to be either near-duplicates in content of
instances at the beginning of the data set or near-duplicates
in a dimension determined to be important by the machine
learning algorithms. Since the tail end of the data set is the
‘test set’, our performance against it appears solid. But this
also directly translates into assistance to the user, who must
only annotate records that are truly distinguishing.

7.1 Maximum Set Precision Results

Another way to compare the performance of the active learn-
ers is to examine the maximum set precision achieved by
each classifier on each of the data sets (i.e. when 200 - 209
instances remain in the test set). This is shown in Table 2,
in which the three active learning algorithms are compared
to each other and to an algorithm that randomly selects the
same number of instances in each round of active learning.

For each annotator, we see (not surprisingly) that the active
learners achieve higher results on the 17-issue data set. In
addition, the HQBC and HQBCBC algorithms outperform
both QBC and the Random Selection active learner. Al-
though QBC improves upon Random Selection, the 17- and
39-issue data sets perform comparably: one would expect
the 17-issue data set to be consistently easier. In the re-
sults shown below, however, we will see that QBC does not
do a good job at distinguishing the important instances for
labeling.

In addition, the HQBCBC algorithm is able to attain es-
sentially perfect replication of the annotator’s behavior for
data set hcl-17 because the patterns in the performance of
the annotator are found early in the process and adding sub-
sequent instances to the training set resolves both noise and
edge cases (low instance count data categories).

8. OTHER DATA SETS

One of the unresolved issues from our work thus far is deter-
mining whether HQBC and HQBCBC will be useful on other

data sets. Luckily, we can quickly gain some insight into po-
tential performance improvements using two data sets: the
Congressional Bills data set used in [14] and the Wolves data
set used in [18].

The Congressional Bills data set is already annotated with
respect to a hierarchical classification scheme. The clas-
sification scheme has a 21-class course-grained level and a
226-class detailed (fine-grained) level. The data set from
1948-1998 has 375,517 instances and of these, 120,927 are
near-duplicates. This interesting attribute of the data was
caused by a perverse incentive in the United States Congress
during the early years of the period — the maximum num-
ber of bill cosponsors was limited, so Congressional Members
would reintroduce the same bill multiple times but with dif-
ferent cosponsors. Using this full data set, an estimate for
how quickly HQBCBC can reach 70% accuracy when using
the 226-class detailed data sets can be achieved by comput-
ing the cosine similarity matrix for the data set and ranking
by HQBCBC score (influence score multiplied by the un-
certainty score). The resulting estimate for the number of
instances to be labeled to achieve 7T0% accuracy is just less
than 3,500.

Analysis of the Wolves data set'! is more complicated. Al-
though it consists of regulatory rule comments that are con-
ceptually similar to the rule comments in the data set ana-
lyzed in this work, they have not been classified using a hi-
erarchical scheme. As the first step in analysis of the scope
of the problem of classifying the Wolves data set by issue,
we have computed some statistics. First, it contains 254,378
comments and an estimated 8 million sentences. Of these
8 million sentences, a conservative analysis suggests that
about half of the data set could be correctly classified by la-
beling about 800 sentences using HQBCBC. This estimate
stems from the cosine similarity matrix: 4 million sentences
are near-enough duplicates to form 800 clusters.

9. CONCLUSIONS

We have presented the first active learning results to date on
rule-specific issue categorization in e-rulemaking. We fur-
thermore present two new active learning algorithms that
are able to take advantage of the rule-specific issue hierar-
chy to improve performance. Our results suggest that ac-
tive learning is a promising avenue for further research for
categorization of public comments according to rule-specific
issues and other hierarchical classification problems. In fu-
ture work, we plan to incorporate these and other active
learning strategies into existing comment annotation tools
and to evaluate them with rulewriters during the comment
analysis phase for an active proposed rule.

10. ACKNOWLEDGMENTS
This work was supported by NSF Grant 11S5-0535099.

Thank you to Jamie Callan, Stuart Shulman, Ed Hovy, and

Nancy Steadle for access to the Gray Wolves data set and
to John Wilkerson for the Congressional Bills data set.

11. REFERENCES

" Available at http://erulemaking.cs.cmu.edu/data.php.




[1]

[10]

[11]

[12]

Data Random | Standard | HQBC | HQBCBC
Set Selection QBC

ad-39 60% 1% 74% 5%
hlc-39 44% 61% 74% 81%
1ck-39 66% 1% 75% 88%
ad-17 65% 1% 5% 80%
hlc-17 59% 70% 87% 99%
lck-17 67% 1% 75% 84%

Table 2: Maximum Set Precision of the Active Learning Algorithms

K. Brinker. Incorporating diversity in active learning
with support vector machines. In Proceedings of
ICML-03, 20th International Conference on Machine
Learning. Morgan Kaufmann Publishers, San
Francisco, US, 2003.

Claire Cardie, Cynthia Farina, Matt Rawding, Adil
Aijaz, and Stephen Purpura. A Study in Rule-Specific
Issue Categorization for e-Rulemaking. In Proceedings
of the 9th Annual International Conference on Digital
Government Research, 2008.

C. Coglianese. Weak democracy, strong information:
The role of information technology in the rulemaking
process. In V. Mayer-Schoenberger and D. Lazer,
editors, FElectronic Government to Information
Government: Governing in the 21ST Century, 2007.
D. Cohn, L. Atlas, and R. Ladner. Improving
generalization with active learning. Machine Learning,
15(2):201-221, 1994.

Y. Freund, H. S. Seung, E. Shamir, and N. Tishby.
Selective sampling using the query by committee
algorithm. Machine Learning, 28:133-168, 1997.

C. Kerwin. The state of rulemaking in the federal
government. Technical report, Transcript Panel 1,
2005.

N. Kwon and E. Hovy. Information acquisition using
multiple classifications. In Proceedings of the Fourth
International Conference on Knowledge Capture
(K-CAP 2007), 2007.

N. Kwon, E. Hovy, and S. Shulman. Multidimensional
text analysis for erulemaking. In Proceedings of the 7th
Annual International Conference on Digital
Government Research, 2006.

D. D. Lewis and J. Catlett. Heterogeneous Uncertainty
Sampling for Supervised Learning. In Proceedings of
the Eleventh International Conference on Machine
Learning, pages 148-156, Rutgers University, New
Brunswick, NJ, 1994. Morgan Kaufmann.

P. Melville and R. Mooney. Diverse ensembles for
active learning. In Proceedings of ICML-04, 21st
International Conference on Machine Learning.
Morgan Kaufmann Publishers, San Francisco, US,
2004.

I. Muslea, S. Minton, and C. Knoblock. Selective
sampling with redundant views. In Proceedings of the
Seventeenth National Conference on Artificial
Intelligence, pages 621-626, 2000.

K. Papineni. Why inverse document frequency? In
Proceedings of the North American Association for
Computational Linguistics, NAACL, pages 25-32,

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

2001.

M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):130 — 137, 1980.

S. Purpura and D. Hillard. Automated Classification
of Congressional Legislation. In Proceedings of the 7th
Annual International Conference on Digital
Government Research, 2006.

G. Salton and M. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, New York, 1983.
B. Scholkopf and A. J. Smola. Learning with Kernels:
Support Vector Machines, Regularization,
Optimization, and Beyond (Adaptive Computation and
Machine Learning). MIT Press, Cambridge, MA, 2002.
H. S. Seung, M. Opper, and H. Sompolinsky. Query by
committee. In Computational Learning Theory, pages
287-294, 1992.

S. Shulman. Perverse incentives: The case against
mass e-mail campaigns. In Proceedings of the Annual
Meeting of the American Political Science Association,
2008.

P. Strauss, T. Rakoff, and C. Farina. Administrative
Law. 10th edition, 2003.

V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer, 1995.

H. Yang and J. Callan. Near-duplicate detection for
erulemaking. In Proceedings of the Fifth National
Conference on Digital Government Research, 2005.

H. Yang and J. Callan. Near-duplicate detection by
instance-level constrained clustering. In Proceedings of
the Twenty-Ninth Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, 2006.



